Channel hopping: protein translocation through the SecA–SecY complex
Quote:
Newly synthesized proteins are translocated across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane through an evolutionarily conserved protein conducting channel or translocon known as Sec61 in eukaryotes and SecY in prokaryotes. In bacteria, the SecA ATPase is thought to be the motor for translocation through the SecY channel. Two papers by Tom Rapoport and colleagues report the long-awaited structure of the SecA–SecY complex from bacteria. The structure, reveals major conformational changes between both partners and suggests that SecA uses a two-helix finger to push translocating proteins into SecY's cytoplasmic funnel. Crosslinking studies provide further experimental support for this mechanism. In a third paper, Osamu Nureki and colleagues present a crystal structure of SecY bound to an anti-SecY Fab fragment revealing a pre-open state of the channel. Together these three papers provide novel insights into the path taken by a translocating protein. In News and Views, Anastassios Economou takes stock of where this work leaves current knowledge of this 'astonishing cellular nanomachine' |
Structure of a complex of the ATPase SecA and the protein-translocation channel
A role for the two-helix finger of the SecA ATPase in protein translocation
Conformational transition of Sec machinery inferred from bacterial SecYE structures
Quote:
Over 30% of proteins are secreted across or integrated into membranes. Their newly synthesized forms contain either cleavable signal sequences or non-cleavable membrane anchor sequences, which direct them to the evolutionarily conserved Sec translocon (SecYEG in prokaryotes and Sec61, comprising alpha-, bold gamma- and bold beta-subunits, in eukaryotes). The translocon then functions as a protein-conducting channel1. These processes of protein localization occur either at or after translation. In bacteria, the SecA ATPase2, 3 drives post-translational translocation. The only high-resolution structure of a translocon available so far is that for SecYEbold beta from the archaeon Methanococcus jannaschii 4, which lacks SecA. Here we present the 3.2-Å-resolution crystal structure of the SecYE translocon from a SecA-containing organism, Thermus thermophilus. The structure, solved as a complex with an anti-SecY Fab fragment, revealed a 'pre-open' state of SecYE, in which several transmembrane helices are shifted, as compared to the previous SecYEbold beta structure4, to create a hydrophobic crack open to the cytoplasm. Fab and SecA bind to a common site at the tip of the cytoplasmic domain of SecY. Molecular dynamics and disulphide mapping analyses suggest that the pre-open state might represent a SecYE conformational transition that is inducible by SecA binding. Moreover, we identified a SecA–SecYE interface that comprises SecA residues originally buried inside the protein, indicating that both the channel and the motor components of the Sec machinery undergo cooperative conformational changes on formation of the functional complex. |
No comments:
Post a Comment