Tuesday, November 25, 2008

Microfluidics

The inner life of mesoorganisms
Quote:
Some of the most ingenious ideas for designing microfluidic systems come from observing plants and animals. A study that quantifies the protein-driven helical flow of liquid in large plant cells, for instance, may well inspire micron-scale liquid mixers and sensors.
Quote:
This brings us back to the issue of biomimetic strategies that borrow nature’s designs to engineer useful devices. Strategies to increase mass transport rates in microchannels, for example, will be essential for rapid sensing of extremely dilute systems [7]. In microfluidics, the “staggered herringbone mixer” [8] incorporates ridges along the walls to drive counter-rotating, helical flows to enhance mixing across the channel, while reducing dispersion along the channel. The mesoorganisms studied by van de Meent et al. illustrate a case where nature, faced with a similar problem, found a similar solution. Hundreds of millions of years later, in developing new microfluidic technologies, humans have found solutions that are not so far from those evolved in nature. Even though the methods for driving the flows are different (pressure-driven vs “cargo-driven,” and chaotic vs regular), the resulting double-helical flows share much in common.

While much of biophysics has been devoted to single-molecule and molecular-level studies, many mysteries remain on larger scales, at the cell level and above, where perceptive questions and keen physical insight reveal many surprises and useful insight into nature’s bag of tricks. van de Meent et al. nicely highlight the interesting and potentially important implications of cyclosis, and more generally the seemingly endless supply of fascinating physical processes at work in biological systems of all scales.
Once again borrowing from design motifs in cells to support our own design initiative.

No comments: