Tuesday, November 25, 2008

Metals and Protein Folding

Molecular factories:
Scientists Unwrap The Elements Of Life
Quote:
ScienceDaily (Oct. 22, 2008) — Researchers at Newcastle University have taken a step forward in our understanding of how the fundamental building blocks of life are put together.
Quote:
The researchers have shown that the way the metals attach is identical for a protein that binds manganese to one that binds copper. In both cases the metals bind inside protein barrels with the same type of metal-attractions.

Carrying out the work in a blue-green algae, a cyanobacterium, the team has been able to show that a protein requiring copper transports to the periplasm, the outer area of the cell, where it then folds around the available metal, which is copper.

Conversely, manganese but not copper atoms are found in the cytosol, in the middle of the cell. The team has demonstrated that a protein requiring manganese folds in the cytosol. The manganese protein is then transported to the periplasm having first trapped its manganese.
Quote:
Once folded, the manganese site is buried, the metal trapped inside the protein, and so the manganese protein can subsequently co-exist with the copper protein because its' metal becomes impervious to replacement by metals further up the Irving-Williams series.

The work exemplifies a cell overcoming the metal binding preferences of proteins.

The new discipline of synthetic biology aims to engineer cells to carry out useful tasks, for example to generate valuable compounds. Because metals are the catalysts for so much of biology, knowing how to engineer a supply of the right metals to the right proteins will be important to the success of these ventures.
Mmmm, reverse engineering the efficiency of intracellular biomolecular machinery and making use of it to design and synthesize valuable compounds. Sounds like a good strategy.

No comments: